Quantitation and Confirmation of Gabapentin

Table of Contents

1	Introduction	3
2	SCOPE	. 3
3	Principle	. 3
4	Specimen Criteria	. 3
5	EQUIPMENT	3
,	5.1 Equipment	
	5.1.1 LC Column	
	5.2 Consumables	. 4
	5.3 Instruments	. 4
	5.4 Software	. 4
	5.5 Chemicals/Reagents	. 4
	5.5.1 Purchased	. 4
	5.5.2 Prepared	. 4
	5.6 Standards/Controls	. 5
	5.6.1 Purchased	. 5
	5.6.2 Prepared	. 5
6	Procedure	. 7
7	ANALYTICAL PARAMETERS	a
•	7.1 Shimadzu HPLC Gradient/Conditions	
	7.2 LTQ-XL Orbitrap	
8	Data Analysis	
O	8.1 Decision Criteria	
	8.1.1 Batch Acceptance Criteria	
	8.1.2 Sample Acceptance Criteria	
	8.2 Calculations	
	8.2.1 Calibration Model	
_		
9		
	9.1 Measurement Uncertainty	
1(O CORRECTIVE MEASURES	11
1:	1 Performance Characteristics	11
	11.1 LOD	11
	11.2 LOQ	
	11.3 Linearity	
	11.4 Bias/Precision	
	11.5 Carryover	11

12	LIMIT	ATIONS	. 11
1	2.1	Interferences	. 11
1	2.2	Processed Sample Stability	. 11
13	SAFET	TY	. 11
14	REVIS	SION HISTORY	12

Quantitation and Confirmation of Gabapentin

1 Introduction

Gabapentin is a drug used for its anticonvulsant and analgesic properties. Structurally, gabapentin resembles GABA (γ -amino butyric acid) but does not interact or interfere with GABA_A or GABA_B neurotransmitter sites within the body; furthermore, gabapentin crosses the blood-brain barrier unlike GABA. Gabapentin is not protein bound to any significant extent and is eliminated as the parent drug with a half-life of approximately five to seven hours.

2 SCOPE

Analyses	☑ Screening ☑ Confirmation ☑ Quantitation				
Matrices	Blood				
Analytes	Gabapentin				
Personnel	This document applies to authorized personnel who perform the described				
	tasks, singly or in combination.				

3 PRINCIPLE

Specimens are mixed with a deuterated analog internal standard. The specimens are extracted using SPE and eluted from the cartridges using a solvent mixture. The eluent is then taken to dryness and reconstituted in a methanol-water mixture and analyzed by liquid chromatography – electrospray – mass spectrometry (LC-ESI-MS).

4 SPECIMEN CRITERIA

This procedure is validated for whole blood. Typically, 2×0.5 mL samples are analyzed; however, samples suspected to be above the procedure's linear range may be diluted before extraction.

5 EQUIPMENT

5.1 Equipment

- A. Centrifuge
- B. Evaporator w/ Nitrogen
- C. Routine laboratory supplies, including disposable pipettes, wooden sticks, test tube racks, graduated cylinders, etc.
- D. Volumetric flasks (5 mL)
- E. Vortex mixer

5.1.1 <u>LC Column</u>

Xterra C-18 MS, 3.0 x 150 mm, 3.5 μm dp; or equivalent

- 1	TOX-436-01: Gabapentin Confirmation/Quantitation	Page 3 of 12	Issue Date: 02/11/2022
	Commination/Quantitation		

5.2 Consumables

- A. 12 x 75 mm culture tubes with polypropylene snap-tops
- B. 16 x 100 mm screw-top tubes with caps
- C. Clean Screen DAU® SPE cartridges (regular flow) 200 milligrams

5.3 Instruments

- A. Thermo LTQ Orbitrap XL
- B. Shimadzu HPLC

5.4 Software

Component	Software	Version	
Operating System	Microsoft Windows	7 Pro SP 1 / XP Professional	
Mass Spectrometer	Foundation	1.0.2 or higher	
	Xcalibur	2.1.0 SP1 / 2.0.7	
	LTQ Tune Plus	2.5.5	
	Shimadzu LC Controller	5.4 / 6.5	

Chemicals/Reagents

Storage/stability determined by manufacturer unless otherwise noted.

5.5.1 Purchased

Chemical or Reagent	Minimum Grade or Purity		
Acetonitrile	Optima		
Ammonium Hydroxide (concentrated)	Certified ACS		
Formic Acid (concentrated)	Optima		
Hydrochloric Acid (concentrated)	Certified ACS		
Isopropanol	HPLC		
Methanol	Optima		
Methylene Chloride	Optima		
Sodium Phosphate (monobasic monohydrate)	Reagent		
Sodium Phosphate (dibasic heptahydrate)	Reagent		
Water	Deionized (DI) and Optima		

5.5.2 Prepared

Mobile Phase 2 (0.1% Formic Acid in Acetonitrile):

To a 500 mL graduated cylinder, add 500 mL acetonitrile and 0.5 mL formic acid, mix well; store at room temperature in glass. Solution is stable for one month.

Mobile Phase 1 (0.1% Formic Acid in Water)

To a 500 mL graduated cylinder, add 500 mL water (Optima grade) and 0.5 mL formic acid, mix well; store at room temperature in glass. Solution is stable for two weeks.

TOX-436-01: Gabapentin Confirmation/Quantitation	of 12 Issue Date: 02/11/2022
--	------------------------------

0.1 M Sodium Phosphate Buffer (pH 6.0):

To a 500 mL volumetric flask, add 400 mL DI water, 6.1 g sodium phosphate monobasic monohydrate, and 1.6 g sodium phosphate dibasic heptahydrate. Mix well to dissolve, verify that the pH is between 5.8 and 6.1; fill to the mark with DI water. Store refrigerated in glass. Solution is stable for two months.

0.1 M Hydrochloric Acid (0.1 M HCl):

To a 100 mL graduated cylinder, add 80 mL DI water and 0.8 mL concentrated hydrochloric acid. Bring to 96 mL with deionized water and mix well; store at room temperature in glass. Solution is stable for six months.

Methanol:Water (10:90 v:v):

To a 50 mL graduated cylinder, add 5 mL methanol and 45 mL water (Optima grade), mix well; store at room temperature in glass. Solution is stable for one year.

Elution Solvent [Methylene Chloride/Isopropanol/Ammonium Hydroxide (78:20:2)]:

To a 100 mL graduated cylinder, add 20 mL of isopropanol and 2 mL of concentrated ammonium hydroxide and mix well. Then add 78 mL of methylene chloride and mix well. Solution is to be made and used on the same day.

5.6 Standards/Controls

Storage/stability determined by manufacturer unless otherwise noted.

5.6.1 Purchased

d_{10} -Gabapentin Stock Standard (100 µg/mL):

Purchased from Cerilliant International or equivalent manufacturer. Storage conditions and stability determined by manufacturer.

Gabapentin Stock Standard (1.0 mg/mL):

Purchased from Cerilliant International and Lipomed or equivalent manufacturers. Storage conditions and stability determined by manufacturer.

5.6.2 Prepared

5.6.2.1 Control

Low Control Working Solution (100 μg/mL):

Add 0.5 mL of the 1.0 mg/mL Standard Stock Solution in a 5 mL volumetric flask and bring to the mark with Methanol. Store in glass at or below 0°C; stable for at least six months.

Confirmation/Quantitation Page 5 of 12 Issue Date: 02/11/202	TOX-436-01: Gabapentin	Page 5 of 12	Issue Date: 02/11/2022
--	------------------------	--------------	------------------------

5.6.2.2 Control Scheme

Exam Type	Level	Matrix (mL)	Solution	Spike (mL)	Final Conc. (μg/mL)	Replicates
Qualitative	Low	0.5	Low Control W/S	0.075	15	1
Quantitative	Low	0.5	Low Control W/S	0.075	15	2
Quantitative	High	0.5	High Control W/S	0.040	80	2

5.6.2.3 Calibration

Low Calibration Working Solution (100 μ g/mL):

Add 0.5 mL of the 1.0 mg/mL Standard Stock Solution in a 5-mL volumetric flask and bring to the mark with Methanol. Store in glass at or below 0°C; stable for at least six months.

5.6.2.4 Calibration Scheme

Calibrator Level (µg/mL)	High Cal WS (1 mg/mL) Volume (μL)	Low Cal WS (100 μg/mL) Volume (μL)	Matrix (mL)
5	-	25	0.5
10	-	50	0.5
20	-	100	0.5
30	-	150	0.5
46	23	-	0.5
60	30	-	0.5
80	40	-	0.5
100	50	-	0.5

5.6.2.5 LC/MS Performance Standard

Column Performance Mix

Dilute 0.010 mL of the Internal Standard Working Solution with 0.090 mL of Methanol:Water (10:90 v:v). Prepare fresh.

5.6.2.6 Matrix

Negative Control Blood:

Purchased from Diagnostics Products Corporation, UTAK Laboratories, Inc., Cliniqa, or obtained in-house from a drug-free donor. Store refrigerated or frozen. Stability determined by manufacturer. A Negative Control Blood sample will be extracted and analyzed with every blood assay.

TOX-436-01: Gabapentin Confirmation/Quantitation	Page 6 of 12	Issue Date: 02/11/2022
--	--------------	------------------------

6 PROCEDURE

Ste	ep		Note	Reference/Lot
A.	Sampl	es/Calibrators/Controls		
	1.	To labeled 16 x 100 mm screw-top tubes add:		
		i. 0.5 mL of biological fluid		
В.	Contro	ols		
	1.	Negative Control Source	[iiiii]	
	2.	Prepare Positive Control(s)		
		i. Low Control Working Solution	[iiiii]	
		ii. High Control Working Solution	[!!!!]]	
		iii. <u>Control Scheme</u>		
C.	Calibra	ators		
	1.	Prepare Calibrators		
		i. Low Calibrator Working Solution	[!!!!!]	
		ii. High Calibrator Working Solution	įiiliį,	
		iii. <u>Calibration Scheme</u>		
D.	Intern	al Standard		
	1.	Add 30 µL of Internal Standard Working Solution	[!!!!!]	
	2.	Bring all samples to approximately 5 mL with deionized water		
	3.	Vortex		
E.	Buffer			
	1.	Add 2 mL of 100mM phosphate buffer	[!!!!]	
	2.	Vortex and allow to stand for 5 minutes		
	3.	Check pH: 6 ± 0.5		
	4.	Centrifuge for 10 minutes at 3500 rpm		
F.	Extrac	t (SPE)		
	1.	Condition cartridges (1 mL/min)	[iiiii]	
		i. Add 3 mL methanol	[!!!!!]	
		ii. Add 3 mL deionized water		
		iii. Add 1 mL 100mM phosphate buffer		
	2.	Load samples (1 mL/min)		

TOX-436-01: Gabapentin Confirmation/Quantitation	Page 7 of 12	Issue Date: 02/11/2022
--	--------------	------------------------

	3.	Wash cartridges (1 mL/min)		
		i. Add 2 mL of deionized water		
		ii. Add 2 mL <u>100mM HCl</u>	[!!!!]	
		iii. Add 3 mL of methanol	ָרָוווו <u>ן</u>	
	4.	Dry cartridge under full vacuum for 1.5 minutes		
	5.	Elute (1 mL/min)		
		i. Add 3 mL <u>Elution Solvent</u>	[!!!!]	
		ii. Collect eluent in 12 x 75 mm tubes		
G.	Conce	ntrate		
	1.	Evaporate the eluent to dryness under nitrogen at 40°C		
н.	Recon	stitute		
		Add 200 μL of methanol:water (10:90) Vortex	[iiii]	
	3.	Add 100 μL of extract to ALS vial and cap.		
I.		mental Analysis LC/MS: analyze 10 μL i. Analyze <u>LC/MS Performance Standard</u> prior to batch analysis	<u>[iiii]</u>	
		ii. Mobile Phase 1 (aqueous)	[!!!!]	
		iii. Mobile Phase 2 (organic)	[iiiii]	
		iv. LC Column	[!!!!]	

7 ANALYTICAL PARAMETERS

7.1 Shimadzu HPLC Gradient/Conditions

Time (min)	Mobile Phase %	Flow Rate
------------	----------------	-----------

	1-Aqueous	2-Organic	(mL/min)	Column Heater (°C)	30
0	90	10	0.3	Autosampler (°C)	15
5	90	10	0.3	Run Time (min)	37
20	10	90	0.3		
30	10	90	0.3		
31	90	10	0.3		
37	90	10	0.3		

7.2 LTQ-XL Orbitrap

A. Source Mode: ESI (+)

Event	Mode	Range (m/z)	Analyzer	Resolution
1	Full Scan	85-400	FTMS	15000

8 DATA ANALYSIS

8.1 Decision Criteria

8.1.1 Batch Acceptance Criteria

No gabapentin should be detected in the Negative Control.

Gabapentin should be present in the Positive Control. Each Quantitative Positive Control will quantitate within ±20% of the target value. See TOX-101 for more information.

8.1.2 Sample Acceptance Criteria

8.1.2.1 Chromatography

The peak of interest should show good chromatographic fidelity, with reasonable peak shape, width, and resolution. Ion peaks are typically extracted at ± 0.005 m/z. In order to be determined acceptable, a chromatographic peak in an unknown sample should compare favorably to a chromatographic peak of the same analyte in a known sample analyzed on the same system in the same or subsequent analytical runs. Additionally, the following two criteria should be met.

8.1.2.1.1 Retention Time

The retention time of the peak should be within $\pm 5\%$ of the retention time (relative or absolute, as appropriate) obtained from injection of an extracted Positive Control or extracted calibrator.

8.1.2.1.2 Signal-to-Noise

To justify the existence of a peak, its signal-to-noise ratio should exceed 3. Note: nonsensical signal to noise values may result from high resolution mass spectral data. Further, the baseline signal for the peak of interest should be at least ten-fold greater than that for any observed peak at similar retention time in a Negative Control or solvent blank injected just prior to the sample.

8.1.2.2 Mass Spectrometry

The M+1 for gabapentin in each sample should be $172.133 \pm 0.005 \text{ m/z}$.

The M+1 for d10-gabapentin in each sample should be 182.196 ±0.005 m/z.

8.2 Calculations

Quantitation is performed by constructing a multi-point calibration curve based on the ratio of the area for the M+1 peak for the analyte to the internal standard. Ion traces are drawn at a 0.005 m/z mass tolerance. See TOX-101 for acceptable practices in calculating quantitative results.

8.2.1 Calibration Model

Model	Linear
Weighting	1/x

TOX-436-01: Gabapentin Confirmation/Quantitation	Page 10 of 12	Issue Date: 02/11/2022
Confirmation/Quantitation	_	

9 REPORTING

9.1 Measurement Uncertainty

Reference CHEM-100, TOX-100 and TOX-101 for guidance.

10 CORRECTIVE MEASURES

Refer to TOX-101 for guidance.

11 PERFORMANCE CHARACTERISTICS

11.1 LOD

 $1 \mu g/mL$

11.2 LOQ

5 μg/mL

11.3 Linearity

 $5 - 100 \, \mu g/mL$

11.4 Bias/Precision

	6 μg/mL	40 μg/mL	80 μg/mL
Bias (n=15)	-13.66	1.38	-2.96
Repeatability (n=15)	4.82	5.75	6.00
Intermediate Precision (n=15)	7.53	8.98	8.27

11.5 Carryover

For extracted negative control samples analyzed immediately following extracted 100 μ g/ml calibrator samples, no carryover was observed.

12 LIMITATIONS

12.1 Interferences

None observed.

12.2 Processed Sample Stability

The calculated difference between day 0 and day 1, 3, and 7 did not exceed ±10%.

13 SAFETY

Take standard precautions for the handling of chemicals and biological materials. Refer to the *FBI Laboratory Safety Manual* for guidance.

TOX-436-01: Gabapentin Confirmation/Quantitation	Page 11 of 12	Issue Date: 02/11/2022
Confirmation/Quantitation		

14 REVISION HISTORY

Revision	Issued	Changes
01 02/11/2022	Document reformat.	
01 02/11/2022		Minor updates to language and phrasing throughout.